Dark selection for JAK/STAT-inhibitor resistance in chronic myelomonocytic leukemia

Author:

Kaznatcheev Artem,Grimes David Robert,Velde Robert Vander,Cannataro Vincent,Baratchart Etienne,Dhawan Andrew,Liu Lin,Myroshnychenko Daria,Taylor-King Jake P.,Yoon Nara,Padron Eric,Marusyk Andriy,Basanta David

Abstract

Acquired therapy resistance to cancer treatment is a common and serious clinical problem. The classic U-shape model for the emergence of resistance supposes that: (1) treatment changes the selective pressure on the treatment-naive tumour; (2) this shifting pressure creates a proliferative or survival difference between sensitive cancer cells and either an existing or de novo mutant; (3) the resistant cells then out-compete the sensitive cells and – if further interventions (like drug holidays or new drugs or dosage changes) are not pursued – take over the tumour: returning it to a state dangerous to the patient. The emergence of ruxolitinib resistance in chronic myelomonocytic leukemia (CMML) seems to challenge the classic model: we see the global properties of resistance, but not the drastic change in clonal architecture expected with the selection bottleneck. To study this, we explore three population-level models as alternatives to the classic model of resistance. These three effective models are designed in such a way that they are distinguishable based on limited experimental data on the time-progression of resistance in CMML. We also propose a candidate reductive implementation of the proximal cause of resistance to ground these effective theories. With these reductive implementations in mind, we also explore the impact of oxygen diffusion and spatial structure more generally on the dynamics of CMML in the bone marrow concluding that, even small fluctuations in oxygen availability can seriously impact the efficacy of ruxolitinib. Finally, we look at the ability of spatially distributed cytokine signaling feedback loops to produce a relapse in symptoms similar to what we observe in the clinic.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3