Beyond the foliage: Using non-destructive multimodal 3D imaging and AI to phenotype and diagnose trunk diseases

Author:

Fernandez RomainORCID,Le Cunff LoïcORCID,Mérigeaud Samuel,Verdeil Jean-LucORCID,Perry Julie,Larignon Philippe,Spilmont Anne-SophieORCID,Chatelet PhilippeORCID,Cardoso Maïda,Goze-Bac ChristopheORCID,Moisy CédricORCID

Abstract

ABSTRACTQuantifying healthy and degraded inner tissues in plants is of great interest in agronomy, for example, to assess plant health and quality and monitor physiological traits or diseases. However, detecting functional and degraded plant tissuesin-vivowithout harming the plant is extremely challenging. New solutions are needed in ligneous and perennial species, for which the sustainability of plantations is crucial. To tackle this challenge, we developed a novel approach based on multimodal 3D imaging and Artificial Intelligence (AI)-based image processing that allowed a noninvasive diagnosis of inner tissues in living plants. The method was successfully applied to the grapevine (Vitis viniferaL.) in vineyards where sustainability was threatened by trunk diseases, while the sanitary status of vines cannot be ascertained without injuring the plants. By combining MRI and X-ray CT 3D imaging with an automatic voxel classification, we could discriminate intact, degraded, and white rot tissues with a mean global accuracy of over 91%. Each imaging modality contribution to tissue detection was evaluated, and we identified quantitative structural and physiological markers characterizing wood degradation steps. The combined study of inner tissue distributionversusexternal foliar symptom history demonstrated that white rot and intact tissue contents are key measurements in evaluating vines’ sanitary status. We finally proposed a model for an accurate trunk disease diagnosis in grapevine. This work opens new routes for precision agriculture andin-situmonitoring of wood quality and plant health across plant species.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3