Brain injuries and complex motor learning suppress Olig2 in a subpopulation of oligodendrocyte precursor cells

Author:

Fang Li-PaoORCID,Liu QingORCID,Meyer ErikaORCID,Welle AnnaORCID,Huang WenhuiORCID,Scheller AnjaORCID,Kirchhoff FrankORCID,Bai XianshuORCID

Abstract

AbstractOligodendrocyte precursor cells (OPCs) are uniformly distributed in the mammalian brain, however their function is rather heterogeneous in respect to their origin, location, receptor/channel expression and age. The basic helix-loop-helix transcription factor Olig2 is expressed in all OPCs as a pivotal determinant of their differentiation. Here, we identified a subset (2-26%) of OPCs lacking Olig2 in various brain regions including cortex, corpus callosum, CA1 and dentate gyrus. These Olig2 negative (Olig2neg) OPCs were enriched in the juvenile brain and decreased subsequently with age, being rarely detectable in the adult brain. However, the loss of this population was not due to apoptosis or microglia-dependent phagocytosis. Unlike Olig2pos OPCs, these subset cells could not be labelled for the mitotic marker Ki67. And, accordingly, BrdU was incorporated only by a three-day long-term labeling but not by a two-hour short pulse, suggesting these cells do not proliferate any more but were derived from proliferating OPCs. The Olig2neg OPCs exhibited a less complex morphology than Olig2pos ones. Olig2neg OPCs preferentially remain in a precursor stage rather than differentiating into highly branched oligodendrocytes. Changing the adjacent brain environment, e.g. by acute injuries or by complex motor learning tasks stimulated the transition of Olig2pos OPCs to Olig2neg cells in the adult. Taken together, our results demonstrate that OPCs transiently suppress Olig2 upon changes of the brain activity.Table of Contents ImageMain points: A subset of OPCs do not express Olig2, of which population peaks in the juvenile brain while wanes with age. Plastic changes of the brain by acute injuries or complex motor learning stop the expression of Olig2 in OPCs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3