After traumatic brain injury oligodendrocytes regain a plastic phenotype and can become astrocytes

Author:

Bai XianshuORCID,Zhao Na,Huang WenhuiORCID,Caudal Laura C.ORCID,Zhao Renping,Hirrlinger JohannesORCID,Walz WolfgangORCID,Kirchhoff Frank,Scheller AnjaORCID

Abstract

AbstractAfter acute brain injuries various response cascades are evoked that direct the formation of the glial scar. Here, we report that acute lesions associated with a disruption of the blood-brain barrier trigger a re-programming within the oligodendrocyte lineage. In PLP-DsRed1/GFAP-EGFP and PLP-EGFPmem/GFAP-mRFP1 transgenic mice with cortical injuries, we transiently found PLP transgene-labelled cells with activated GFAP promoter activity adjacent to the lesion site. We termed them AO cells, based on their concomitant activity of astro- and oligodendroglial genes. By fate mapping using PLP- and GFAP-split Cre complementation and NG2-CreERT2 mice we observed that major portions of AO cells surprisingly differentiated into astrocytes. Using repeated long-term in vivo two-photon laser-scanning microscopy (2P-LSM) we followed oligodendrocytes after injury. We observed their conversion into astrocytes via the AO cell stage with silencing of the PLP promoter and simultaneous activation of the GFAP promoter. In addition, we provide evidence that this oligodendrocyte-to-astrocyte conversion depends on local cues. At the lesion site higher expression levels of various glial differentiation factors were detected. And indeed, local injection of IL-6 promoted the formation of AO cells. In summary, our findings highlight the plastic potential of oligodendrocytes in acute brain trauma. An altered environmental milieu affects gene expression programs of mature oligodendrocytes and induces a plastic differentiation stage with astrogliogenic potential via transitional AO cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3