The discovery of genome-wide mutational dependence in naturally evolving populations

Author:

Green Anna G.ORCID,Vargas RogerORCID,Marin Maximillian G.ORCID,Freschi LucaORCID,Xie Jiaqi,Farhat Maha R.ORCID

Abstract

Abstract Background Evolutionary pressures on bacterial pathogens can result in phenotypic change including increased virulence, drug resistance, and transmissibility. Understanding the evolution of these phenotypes in nature and the multiple genetic changes needed has historically been difficult due to sparse and contemporaneous sampling. A complete picture of the evolutionary routes frequently travelled by pathogens would allow us to better understand bacterial biology and potentially forecast pathogen population shifts. Methods In this work, we develop a phylogeny-based method to assess evolutionary dependency between mutations. We apply our method to a dataset of 31,428Mycobacterium tuberculosiscomplex (MTBC) genomes, a globally prevalent bacterial pathogen with increasing levels of antibiotic resistance. Results We find evolutionary dependency within simultaneously- and sequentially-acquired variation, and identify that genes with dependent sites are enriched in antibiotic resistance and antigenic function. We discover 20 mutations that potentiate the development of antibiotic resistance and 1,003 dependencies that evolve as a consequence antibiotic resistance. Varying by antibiotic, between 9% and 80% of resistant strains harbor a dependent mutation acquired after a resistance-conferring variant. We demonstrate that mutational dependence can not only improve prediction of phenotype (e.g. antibiotic resistance), but can also detect sequential environmental pressures on the pathogen (e.g. the pressures imposed by sequential antibiotic exposure during the course of standard multi-antibiotic treatment). Taken together, our results demonstrate the feasibility and utility of detecting dependent events in the evolution of natural populations. Data and code available at:https://github.com/farhat-lab/DependentMutations

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3