Direct laser writing of 3D electrodes on flexible substrates

Author:

Brown Morgan A.,Zappitelli Kara M.,Singh Loveprit,Yuan Rachel C.,Bemrose Melissa A.,Brogden Valerie,Miller David J.,Cogan Stuart F.,Gardner Timothy J.

Abstract

AbstractThis report describes a 3D microelectrode array integrated on a thin-film flexible cable for neural recording in small animals. The micro electrode array fabrication process integrates traditional silicon thin-film processing techniques and direct laser writing of 3D structures at micron resolution via two-photon lithography. While direct laser writing of 3D printed electrodes has been described before, this report is the first to provide a method for high-aspect-ratio laser-written structures integrated with microfabricated electrical traces. One prototype is a 16-channel array composed of 350 μm long shanks spaced on a grid with 90 μm pitch. Other devices shown here include biomimetic mosquito-needles that penetrate through the dura of birds and porous electrodes designed to promote tissue ingrowth or enhance charge injection capacity for neural stimulation. These devices are just a few examples of a new design space that will enable high-channel-count 3D electrode arrays with features definable at single micrometer resolution. Using a custom laser writer, the 3D printing process is rapid (1 mm3/min). This high-speed printing combined with standard wafer-scale processes will enable efficient device fabrication and new studies examining the relationship between electrode geometry and electrode performance. We anticipate highest impact in small animal models, nerve interfaces, retinal implants, and other applications requiring small, high density 3D electrodes.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3