Robustness and reproducibility of simple and complex synthetic logic circuit designs using a DBTL loop

Author:

Cummins BreschineORCID,Vrana Justin,Moseley Robert C.,Eramian Hamed,Deckard Anastasia,Fontanarrosa Pedro,Bryce Daniel,Weston Mark,Zheng George,Nowak Joshua,Motta Francis C.ORCID,Eslami Mohammed,Johnson Kara Layne,Goldman Robert P.,Myers Chris J.,Johnson Tessa,Vaughn Matthew W.,Gaffney Niall,Urrutia Joshua,Gopaulakrishnan Shweta,Biggers Vanessa,Higa Trissha R.,Mosqueda Lorraine A.,Gameiro Marcio,Gedeon Tomáš,Mischaikow Konstantin,Beal JacobORCID,Bartley Bryan,Mitchell Tom,Nguyen Tramy T.,Roehner Nicholas,Haase Steven B.

Abstract

AbstractComputational tools addressing various components of design-build-test-learn loops (DBTL) for the construction of synthetic genetic networks exist, but do not generally cover the entire DBTL loop. This manuscript introduces an end-to-end sequence of tools that together form a DBTL loop called DART (Design Assemble Round Trip). DART provides rational selection and refinement of genetic parts to construct and test a circuit. Computational support for experimental process, metadata management, standardized data collection, and reproducible data analysis is provided via the previously published Round Trip (RT) test-learn loop. The primary focus of this work is on the Design Assemble (DA) part of the tool chain, which improves on previous techniques by screening up to thousands of network topologies for robust performance using a novel robustness score derived from dynamical behavior based on circuit topology only. In addition, novel experimental support software is introduced for the assembly of genetic circuits. A complete design-through-analysis sequence is presented using several OR and NOR circuit designs, with and without structural redundancy, that are implemented in budding yeast. The execution of DART tested the predictions of the design tools, specifically with regard to robust and reproducible performance under different experimental conditions. The data analysis depended on a novel application of machine learning techniques to segment bimodal flow cytometry distributions. Evidence is presented that, in some cases, a more complex build may impart more robustness and reproducibility across experimental conditions.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. I. Del Valle , E. M. Fulk , P. Kalvapalle , J. J. Silberg , C. A. Masiello , and L. B. Stadler , “Translating new synthetic biology advances for biosensing into the earth and environmental sciences,” Frontiers in Microbiology, p. 3513, 2021.

2. Synthetic biology: applications come of age

3. A brief history of synthetic biology

4. B. Cummins , R. C. Moseley , A. Deckard , M. Weston , G. Zheng , D. Bryce , S. Gopaulakrishnan , T. Johnson , J. Nowak , M. Gameiro , T. Gedeon , K. Mischaikow , M. Vaughn , N. I. Gaffney , J. Urrutia , R. P. Goldman , J. Beal , B. Bartley , T. T. Nguyen , N. Roehner , T. Mitchell , J. D. Vrana , K. J. Clowers , N. Maheshri , D. Becker , E. Mikhalev , V. Biggers , T. R. Higa , L. A. Mosqueda , and S. B. Haase , “Computational prediction of synthetic circuit function across growth conditions.”

5. Computational design tools for synthetic biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3