Single-cell imaging reveals non-cooperative and cooperative infection strategies of Listeria monocytogenes in macrophages

Author:

Moran JosephineORCID,Feltham LiamORCID,Bagnall JamesORCID,Goldrick MarieORCID,Lord Elizabeth,Nettleton Catherine,Spiller David G.ORCID,Roberts IanORCID,Paszek PawelORCID

Abstract

AbstractPathogens have developed intricate strategies to overcome the host’s innate immune responses. In this paper we use live-cell microscopy with a single bacterium resolution to follow in real time interactions between the food-borne pathogen L. monocytogenes and host macrophages, a key event controlling the infection in vivo. We demonstrate that infection results in heterogeneous outcomes, with only a subset of bacteria able to establish a replicative invasion of macrophages. The fate of individual bacteria in the same host cell was independent from each other and non-cooperative, but a higher multiplicity of infection resulted in a reduced probability of replication. Using internalisation assays and conditional probabilities to mathematically describe the multi-stage invasion process, we demonstrate that the secreted Listeriolysin toxin (LLO) of the PrfA regulon regulates replication probability by compromising the ability to phagocytose bacteria. Using strains expressing fluorescent reporters to follow transcription of either the LLO-encoding hly or actA genes, we show that replicative bacteria exhibited higher PrfA regulon expression in comparison to those bacteria that did not replicate, however elevated PrfA expression per se was not sufficient to increase the probability of replication. Overall, this demonstrates a new role for the population-level, but not single cell PrfA-mediated cooperativity to regulate outcomes of host pathogen interactions.Key pointsL. monocytogenes invasion of innate immune macrophages results in heterogeneous infection outcomes at the single cell levelFate of individual bacteria in the same host cell is independent from each other and non-cooperativeBacterial populations coordinate host cell uptake via the rate of phagocytosis to reduce internalization at high MOIThe PrfA regulon system is necessary but not sufficient for L. monocytogenes replication, but population-level PrfA virulence regulates single cell outcome probability

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3