Phase separation of Myc differentially regulates gene transcription

Author:

Yang Junjiao,Chung Chan-I,Koach Jessica,Liu Hongjiang,Zhao Qian,Yang Xiaoyu,Shen Yin,Weiss William A.,Shu XiaokunORCID

Abstract

AbstractDysregulation and enhanced expression of MYC transcription factors including MYC and MYCN contribute to majority of human cancers. For example, MYCN is amplified up to several hundred-fold in high-risk neuroblastoma. One potential consequence of elevated expression is liquid-liquid phase separation (LLPS), occurring when the concentration of certain macromolecules and biopolymers is above a threshold. Here, we show that in MYCN-amplified human neuroblastoma cells, N-myc protein forms condensate-like structures. Using MYCN-nonamplified neuroblastoma cells that have no or little endogenous N-myc protein expression, we found that exogenously expressed N-myc undergoes LLPS in a concentration-dependent manner, and determined its threshold concentration for LLPS in the cellular context. Biophysically, N-myc condensates in live cells exhibit liquid-like behavior. The intrinsically disordered transactivation domain (TAD) of N-myc is indispensable for LLPS. Functionally, the N-myc condensates contain its obligatory DNA-binding and dimerization partner, genomic DNA, transcriptional machinery, and nascent RNA. These condensates are dynamically regulated during cell mitosis, correlated with chromosomal condensation and de-condensation. We further show that the TAD and the DNA-binding domain are both required for transcriptional activity of N-myc condensates. Most importantly, using a chemogenetic tool that decouples the role of phase separation from changes in protein abundance level in the nucleus, we discovered that N-myc phase separation regulates gene transcription and promotes SH-EP cell proliferation. Interestingly, LLPS of N-myc only modulates a small proportion of N-myc-regulated genes. Taken together, our results demonstrate that N-myc undergoes LLPS, and that its phase separation differentially modulates the transcriptome, partially contributes to gene transcription, and promotes cell proliferation. Our work opens a new direction in understanding Myc-related cancer biology that has been studied for several decades.

Publisher

Cold Spring Harbor Laboratory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3