Understanding how genetically encoded tags affect phase separation by Heterochromatin Protein HP1α

Author:

Zhou Ziling (Kate)ORCID,Narlikar Geeta J.ORCID

Abstract

AbstractLiquid-liquid phase separation (LLPS) is driven by weak multi-valent interactions. Such interactions can result in the formation of puncta in cells and dropletsin vitro. The heterochromatin protein HP1α forms droplets with chromatinin vitroand is found in puncta in cells. A common approach to visualize the dynamics of HP1α in cells is to genetically encode fluorescent tags on the protein. HP1α modified with tags such as GFP has been shown to localize to dynamic punctain vivo. However, whether tagged HP1α retains its intrinsic phase separation properties has not been systematically studied. Here, using different C-terminal tags (AID-sfGFP, mEGFP, and UnaG), we assessed how tag size and linker length affected the phase separation ability of HP1α with DNAin vitro. We found that the AID-sfGFP tag (52 kDa) promoted HP1α phase-separation, possibly driven by the highly disordered AID degron. The mEGFP tag (27 kDa) inhibited phase-separation by HP1α, whereas an UnaG tag (13 kDa) with a 16 amino acid linker showed minimal perturbation. The UnaG tag can thus be used in cellular studies of HP1α to better correlatein vitroandin vivostudies. To test if cellular crowding overcomes the negative effects of large tagsin vivo, we used polyethylene glycol (PEG) to mimic crowdingin vitro. We found that addition of 10% PEG8000 or PEG4000 enables phase separation by GFP-tagged HP1α at comparable concentrations as untagged HP1α. However, these crowding agents also substantially dampened the differences in phase-separation between wild-type and mutant HP1α proteins. PEG further drove phase-separation of Maltose Binding Protein (MBP), a tag often used to solubilize other proteins. These results suggest that phase-separation of biological macromolecules with PEG should be interpreted with caution as PEG-based crowding agents may change the types of interactions made within the phases.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3