Single-cell atlas of bronchoalveolar lavage from preschool cystic fibrosis reveals new cell phenotypes

Author:

Maksimovic JovanaORCID,Shanthikumar ShivanthanORCID,Howitt George,Hickey Peter F,Ho William,Anttila Casey,Brown Daniel V.,Senabouth Anne,Kaczorowski Dominik,Amann-Zalcenstein Daniela,Powell Joseph E.,Ranganathan Sarath C.ORCID,Oshlack AliciaORCID,Neeland Melanie R.ORCID

Abstract

ABSTRACTInflammation is a key driver of cystic fibrosis (CF) lung disease, not addressed by current standard care. Improved understanding of the mechanisms leading to aberrant inflammation may assist the development of effective anti-inflammatory therapy. Single-cell RNA sequencing (scRNA-seq) allows profiling of cell composition and function at previously unprecedented resolution. Herein, we seek to use multimodal single-cell analysis to comprehensively define immune cell phenotypes, proportions and functional characteristics in preschool children with CF. We analyzed 42,658 cells from bronchoalveolar lavage of 11 preschool children with CF and a healthy control using scRNA-seq and parallel assessment of 154 cell surface proteins. Validation of cell types identified by scRNA-seq was achieved by assessment of samples by spectral flow cytometry. Analysis of transcriptome expression and cell surface protein expression, combined with functional pathway analysis, revealed 41 immune and epithelial cell populations in BAL. Spectral flow cytometry analysis of over 256,000 cells from a subset of the same patients revealed high correlation in major cell type proportions across the two technologies. Macrophages consisted of 13 functionally distinct sub populations, including previously undescribed populations enriched for markers of vesicle production and regulatory/repair functions. Other novel cell populations included CD4 T cells expressing inflammatory IFNα/β and NFκB signalling genes. Our work provides a comprehensive cellular analysis of the pediatric lower airway in preschool children with CF, reveals novel cell types and provides a reference for investigation of inflammation in early life CF.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. deMULTIplex2: robust sample demultiplexing for scRNA-seq;Genome Biology;2024-01-30

2. Benchmarking single-cell hashtag oligo demultiplexing methods;NAR Genomics and Bioinformatics;2023-10-11

3. Recent Approaches of Intranasal to Brain Drug Delivery System;Journal for Research in Applied Sciences and Biotechnology;2023-06-30

4. deMULTIplex2: robust sample demultiplexing for scRNA-seq;2023-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3