Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 Macrodomain of SARS-CoV-2

Author:

Gahbauer StefanORCID,Correy Galen J.ORCID,Schuller MarionORCID,Ferla Matteo P.ORCID,Doruk Yagmur UmayORCID,Rachman MoiraORCID,Wu TaiaseanORCID,Diolaiti MorganORCID,Wang SiyiORCID,Neitz R. JeffreyORCID,Fearon DarenORCID,Radchenko DmytroORCID,Moroz YuriiORCID,Irwin John J.ORCID,Renslo Adam R.ORCID,Taylor Jenny C.ORCID,Gestwicki Jason E.ORCID,von Delft FrankORCID,Ashworth AlanORCID,Ahel IvanORCID,Shoichet Brian K.ORCID,Fraser James S.ORCID

Abstract

AbstractThe nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 152 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated protein dynamics within the active site, and key inhibitor motifs that will template future drug development against Mac1.Significance StatementSARS-CoV-2 encodes a viral macrodomain protein (Mac1) that hydrolyzes ribo-adenylate marks on viral proteins, disrupting the innate immune response to the virus. Catalytic mutations in the enzyme make the related SARS-1 virus less pathogenic and non-lethal in animals, suggesting that Mac1 will be a good antiviral target. However, no potent inhibitors of this protein class have been described, and pharmacologically the enzyme remains an orphan. Here, we computationally designed potent inhibitors of Mac1, determining 150 inhibitor-enzyme structures to ultra-high resolution by crystallography. In silico fragment linking and molecular docking of > 450 million virtual compounds led to inhibitors with submicromolar activity. These molecules may template future drug discovery efforts against this crucial but understudied viral target.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3