Abstract
AbstractUnleashing anti-tumor T cell activity by checkpoint inhibition is effective in many cancer patients but clinical response rates remain limited. Myeloid derived suppressor cells erode antitumor lymphocyte numbers and function, and correlate with resistance to checkpoint inhibitors. By screening small molecule libraries, we identified JAK inhibitors’ ability to rescue T cell function. Despite its documented immune suppressive properties, the prototypical JAK inhibitor ruxolitinib enhanced the efficacy of immune checkpoint blockade in cancer. This effect correlated with loss of suppressive gene expression, and acquisition of immunostimulatory molecular markers and T cell stimulatory activity in myeloid cells. In preclinical models, ruxolitinib significantly improved the function and increased the total numbers of activated tumor-infiltrating NK and CD4 T cells compared to checkpoint blockade alone and the efficacy was conditional on granulocytic cells. In addition to myeloid reprogramming in the tumor, ruxolitinib blunts G-CSF signaling in the bone marrow to prevent expression of suppressive and chemotaxis genes in neutrophils. In a clinical trial of Hodgkin lymphoma patients resistant to checkpoint inhibitors, treatment with ruxolitinib significantly reduced neutrophil-to-lymphocyte ratios and levels of suppressive markers in myeloid cells but increased numbers of cytokine-producing T cells. These results support the therapeutic potential of JAK inhibition in combination with checkpoint inhibitors in cancer and highlight the potential of reshaped myeloid immunity to improve immunotherapy.One sentence summary: Ruxolitinib reshapes myeloid immunity to synergize with checkpoint inhibitors
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献