Simulation-Based Inference for Whole-Brain Network Modeling of Epilepsy using Deep Neural Density Estimators

Author:

Hashemi MeysamORCID,Vattikonda Anirudh N.,Jha JayantORCID,Sip ViktorORCID,Woodman Marmaduke M.ORCID,Bartolomei FabriceORCID,Jirsa Viktor K.ORCID

Abstract

AbstractWhole-brain network modeling of epilepsy is a data-driven approach that combines personalized anatomical information with dynamical models of abnormal brain activity to generate spatio-temporal seizure patterns as observed in brain imaging signals. Such a parametric simulator is equipped with a stochastic generative process, which itself provides the basis for inference and prediction of the local and global brain dynamics affected by disorders. However, the calculation of likelihood function at whole-brain scale is often intractable. Thus, likelihood-free inference algorithms are required to efficiently estimate the parameters pertaining to the hypothetical areas in the brain, ideally including the uncertainty. In this detailed study, we present simulation-based inference for the virtual epileptic patient (SBI-VEP) model, which only requires forward simulations, enabling us to amortize posterior inference on parameters from low-dimensional data features representing whole-brain epileptic patterns. We use state-of-the-art deep learning algorithms for conditional density estimation to retrieve the statistical relationships between parameters and observations through a sequence of invertible transformations. This approach enables us to readily predict seizure dynamics from new input data. We show that the SBI-VEP is able to accurately estimate the posterior distribution of parameters linked to the extent of the epileptogenic and propagation zones in the brain from the sparse observations of intracranial EEG signals. The presented Bayesian methodology can deal with non-linear latent dynamics and parameter degeneracy, paving the way for reliable prediction of neurological disorders from neuroimaging modalities, which can be crucial for planning intervention strategies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3