Simulation-based inference for efficient identification of generative models in computational connectomics

Author:

Boelts JanORCID,Harth PhilippORCID,Gao RichardORCID,Udvary DanielORCID,Yáñez FelipeORCID,Baum DanielORCID,Hege Hans-ChristianORCID,Oberlaender MarcelORCID,Macke Jakob H.ORCID

Abstract

AbstractRecent advances in connectomics research enable the acquisition of increasing amounts of data about the connectivity patterns of neurons. How can we use this wealth of data to efficiently derive and test hypotheses about the principles underlying these patterns? A common approach is to simulate neuronal networks using a hypothesized wiring rule in a generative model and to compare the resulting synthetic data with empirical data. However, most wiring rules have at least some free parameters, and identifying parameters that reproduce empirical data can be challenging as it often requires manual parameter tuning. Here, we propose to use simulation-based Bayesian inference (SBI) to address this challenge. Rather than optimizing a fixed wiring rule to fit the empirical data, SBI considers many parametrizations of a rule and performs Bayesian inference to identify the parameters that are compatible with the data. It uses simulated data from multiple candidate wiring rule parameters and relies on machine learning methods to estimate a probability distribution (the ‘posterior distribution over parameters conditioned on the data’) that characterizes all data-compatible parameters. We demonstrate how to apply SBI in computational connectomics by inferring the parameters of wiring rules in anin silicomodel of the rat barrel cortex, givenin vivoconnectivity measurements. SBI identifies a wide range of wiring rule parameters that reproduce the measurements. We show how access to the posterior distribution over all data-compatible parameters allows us to analyze their relationship, revealing biologically plausible parameter interactions and enabling experimentally testable predictions. We further show how SBI can be applied to wiring rules at different spatial scales to quantitatively rule out invalid wiring hypotheses. Our approach is applicable to a wide range of generative models used in connectomics, providing a quantitative and efficient way to constrain model parameters with empirical connectivity data.Author summaryThe brain is composed of an intricately connected network of cells—what are the principles that contribute to constructing these patterns of connectivity, and how? To answer these questions, amassing connectivity data alone is not enough. We must also be able to efficiently develop and test our ideas about the underlying connectivity principles. For example, we could simulate a hypothetical wiring rule like “neurons near each other are more likely to form connections” in a computational model and generate corresponding synthetic data. If the synthetic, simulated data resembles the real, measured data, then we have some confidence that our hypotheses might be correct. However, the proposed wiring rules usually have unknown parameters that we need to “tune” such that simulated data matches the measurements. The central challenge thus lies in finding all the potential parametrizations of a wiring rule that can reproduce the measured data, as this process is often idiosyncratic and labor-intensive. To tackle this challenge, we introduce an approach combining computational modeling in connectomics, deep learning, and Bayesian statistical inference to automatically infer a probability distribution over the model parameters likely to explain the data. We demonstrate our approach by inferring the parameters of a wiring rule in a detailed model of the rat barrel cortex and find that the inferred distribution identifies multiple data-compatible model parameters, reveals biologically plausible parameter interactions, and allows us to make experimentally testable predictions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3