Author:
de la Rosa Ezequiel,Sima Diana M.,Kirschke Jan S.,Menze Bjoern,Robben David
Abstract
AbstractBackgroundCurrent guidelines for CT perfusion (CTP) in acute stroke suggest acquiring scans with a minimal duration of 60-70 s. But even then, CTP analysis can be affected by truncation artifacts. Conversely, shorter acquisitions are still widely used in clinical practice and are usually sufficient to reliably estimate lesion volumes. We aim to devise an automatic method that detects scans affected by truncation artifacts.MethodsShorter scan durations are simulated from the ISLES’18 dataset by consecutively removing the last CTP time-point until reaching a 10 s duration. For each truncated series, perfusion lesion volumes are quantified and used to label the series as unreliable if the lesion volumes considerably deviate from the original untruncated ones. Afterwards, nine features from the arterial input function (AIF) and the vascular output function (VOF) are derived and used to fit machine-learning models with the goal of detecting unreliably truncated scans. Methods are compared against a baseline classifier solely based on the scan duration, which is the current clinical standard. The ROC-AUC, precision-recall AUC and the F1-score are measured in a 5-fold cross-validation setting.ResultsMachine learning models obtained high performance, with a ROC-AUC of 0.964 and precision-recall AUC of 0.958 for the best performing classifier. The highest detection rate is obtained with support vector machines (F1-score = 0.913). The most important feature is the AIFcoverage, measured as the time difference between the scan duration and the AIF peak. In comparison, the baseline classifier yielded a lower performance of 0.940 ROC-AUC and 0.933 precision-recall AUC. At the 60-second cutoff, the baseline classifier obtained a low detection of unreliably truncated scans (F1-Score = 0.638).ConclusionsMachine learning models fed with discriminant AIF and VOF features accurately detected unreliable stroke lesion measurements due to insufficient acquisition duration. Unlike the 60s scan duration criterion, the devised models are robust to variable contrast injection and CTP acquisition protocols and could hence be used for quality assurance in CTP post-processing software.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献