Cerebral Blood Flow Is the Optimal CT Perfusion Parameter for Assessing Infarct Core

Author:

Campbell Bruce C.V.1,Christensen Søren1,Levi Christopher R.1,Desmond Patricia M.1,Donnan Geoffrey A.1,Davis Stephen M.1,Parsons Mark W.1

Affiliation:

1. From the Departments of Medicine and Neurology (B.C.V.C., S.M.D.) and the Department of Radiology (B.C.V.C., S.C., P.M.D.), The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia; the Department of Neurology and Hunter Medical Research Institute (C.R.L., M.W.P.), John Hunter Hospital, University of Newcastle, Australia; and Florey Neuroscience Institutes (G.A.D.), The University of Melbourne, Parkville, Victoria, Australia.

Abstract

Background and Purpose— CT perfusion (CTP) is widely and rapidly accessible for imaging acute ischemic stroke but has limited validation. Cerebral blood volume (CBV) has been proposed as the best predictor of infarct core. We tested CBV against other common CTP parameters using contemporaneous diffusion MRI. Methods— Patients with acute ischemic stroke <6 hours after onset had CTP and diffusion MRI <1 hour apart, before any reperfusion therapies. CTP maps of time to peak (TTP), absolute and relative CBV, cerebral blood flow (CBF), mean transit time (MTT), and time to peak of the deconvolved tissue residue function (Tmax) were generated. The diffusion lesion was manually outlined to its maximal visual extent. Receiver operating characteristic (ROC) analysis area under the curve (AUC) was used to quantify the correspondence of each perfusion parameter to the coregistered diffusion-weighted imaging lesion. Optimal thresholds were determined (Youden index). Results— In analysis of 98 CTP slabs (54 patients, median onset to CT 190 minutes, median CT to MR 30 minutes), relative CBF performed best (AUC, 0.79; 95% CI, 0.77–81), significantly better than absolute CBV (AUC, 0.74; 95% CI, 0.73–0.76). The optimal threshold was <31% of mean contralateral CBF. Specificity was reduced by low CBF/CBV in noninfarcted white matter in cases with reduced contrast bolus intensity and leukoaraiosis. Conclusions— In contrast to previous reports, CBF corresponded with the acute diffusion-weighted imaging lesion better than CBV, although no single threshold avoids detection of false-positive regions in unaffected white matter. This relates to low signal-to-noise ratio in CTP maps and emphasizes the need for optimized acquisition and postprocessing.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 345 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3