Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution

Author:

Kittelmann Sebastian,Buffry Alexandra D.,Franke Franziska A.,Almudi Isabel,Yoth Marianne,Sabaris Gonzalo,Couso Juan Pablo,Nunes Maria D. S.,Frankel Nicolás,Gómez-Skarmeta José Luis,Pueyo-Marques Jose,Arif Saad,McGregor Alistair P.ORCID

Abstract

AbstractConvergent phenotypic evolution is often caused by recurrent changes at particular nodes in the underlying gene regulatory networks (GRNs). The genes at such evolutionary ‘hotspots’ are thought to maximally affect the phenotype with minimal pleiotropic consequences. This has led to the suggestion that if a GRN is understood in sufficient detail, the path of evolution may be predictable. The repeated evolutionary loss of larval trichomes among Drosophila species is caused by the loss of shavenbaby (svb) expression. svb is also required for development of leg trichomes, but the evolutionary gain of trichomes in the ‘naked valley’ on T2 femurs in Drosophila melanogaster is caused by the loss of microRNA-92a (miR-92a) expression rather than changes in svb. We compared the expression and function of components between the larval and leg trichome GRNs to investigate why the genetic basis of trichome pattern evolution differs in these developmental contexts. We found key differences between the two networks in both the genes employed, and in the regulation and function of common genes. These differences in the GRNs reveal why mutations in svb are unlikely to contribute to leg trichome evolution and how instead miR-92a represents the key evolutionary switch in this context. Our work shows that variability in GRNs across different developmental contexts, as well as whether a morphological feature is lost versus gained, influence the nodes at which a GRN evolves to cause morphological change. Therefore, our findings have important implications for understanding the pathways and predictability of evolution.Author SummaryA major goal of biology is to identify the genetic cause of organismal diversity. Convergent evolution of traits is often caused by changes in the same genes – evolutionary ‘hotspots’. shavenbaby is a ‘hotspot’ for larval trichome loss in Drosophila, however microRNA-92a underlies the gain of leg trichomes. To understand this difference in the genetics of phenotypic evolution, we compared the expression and function of genes in the underlying regulatory networks. We found that the pathway of evolution is influenced by differences in gene regulatory network architecture in different developmental contexts, as well as by whether a trait is lost or gained. Therefore, hotspots in one context may not readily evolve in a different context. This has important implications for understanding the genetic basis of phenotypic change and the predictability of evolution.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phenotyping in Evo-Devo;Evolutionary Developmental Biology;2021

2. Phenotyping in Evo-Devo;Evolutionary Developmental Biology;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3