Pharmacological Characterisation of Novel Adenosine Receptor A3R Antagonists

Author:

Barkan Kerry,Lagarias Panagiotis,Stampelou Margarita,Stamatis Dimitrios,Hoare Sam,Klotz Karl-Norbert,Vrontaki Eleni,Kolocouris Antonios,Ladds GrahamORCID

Abstract

SummaryBackground and PurposeThe adenosine A3 receptor (A3R) belongs to a family of four adenosine receptor (AR) subtypes which all play distinct roles throughout the body. A3R antagonists have been described as potential treatments for numerous diseases including asthma. Given the similarity between ARs orthosteric binding sites, obtaining highly selective antagonists is a challenging but critical task.Experimental approach39 potential A3R, antagonists were screened using agonist-induced inhibition of cAMP. Positive hits were assessed for AR subtype selectivity through cAMP accumulation assays. The antagonist affinity was determined using Schild analysis (pA2 values) and fluorescent ligand binding. Further, a likely binding pose of the most potent antagonist (K18) was determined through molecular dynamic (MD) simulations and consistent calculated binding free energy differences between K18 and congeners, using a homology model of A3R, combined with mutagenesis studies.Key ResultsWe demonstrate that K18, which contains a 3-(dichlorophenyl)-isoxazole group connected through carbonyloxycarboximidamide fragment with a 1,3-thiazole ring, is a specific A3R (<1 µM) competitive antagonist. Structure-activity relationship investigations revealed that loss of the 3-(dichlorophenyl)-isoxazole group significantly attenuated K18 antagonistic potency. Mutagenic studies supported by MD simulations identified the residues important for binding in the A3R orthosteric site. Finally, we introduce a model that enables estimates of the equilibrium binding affinity for rapidly disassociating compounds from real-time fluorescent ligand-binding studies.Conclusions and ImplicationsThese results demonstrate the pharmacological characterisation of a selective competitive A3R antagonist and the description of its orthosteric binding mode. Our findings may provide new insight for drug discovery.What is already knownThe search for AR subtype specific compounds often leads to ones with multiple subtype bindingWhat this study addsThis study demonstrates the pharmacological characterisation of a selective competitive A3R antagonistMD simulations identified the residues important for binding in the A3R orthosteric siteClinical significanceThis study offers insight into A3R antagonists that may provide new opportunities for drug discovery

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3