Abstract
AbstractWhole cell biosensors (WCBs) have become prominent in many fields from environmental analysis to biomedical diagnostics thanks to advanced genetic circuit design principles. Despite increasing demand on cost effective and easy-to-use assessment methods, a considerable amount of WCBs retains certain drawbacks such as long response time, low precision and accuracy. Furthermore, the output signal level does not correspond to a specific analyte concentration value but shows comparative quantification. Here, we utilized a neural network-based architecture to improve the aforementioned features of WCBs and engineered a gold sensing WCB which has a long response time (18 h). Two Long-Short Term-Memory (LSTM)-based networks were integrated to assess both ON/OFF and concentration dependent states of the sensor output, respectively. We demonstrated that binary (ON/OFF) network was able to distinguish between ON/OFF states as early as 30 min with 78% accuracy and over 98% in 3 h. Furthermore, when analyzed in analog manner, we demonstrated that network can classify the raw fluorescence data into pre-defined analyte concentration groups with high precision (82%) in 3 h. This approach can be applied to a wide range of WCBs and improve rapidness, simplicity and accuracy which are the main challenges in synthetic biology enabled biosensing.
Publisher
Cold Spring Harbor Laboratory