Ensemble epistasis: thermodynamic origins of non-additivity between mutations

Author:

Morrison Anneliese J.ORCID,Wonderlick Daria R.ORCID,Harms Michael J.ORCID

Abstract

AbstractNon-additivity between mutations—epistasis—profoundly shapes evolution. It can be difficult to understand its mechanistic origins. Here we show that “ensemble epistasis” is likely a universal feature of macromolecules. Using a simple analytical model, we found that epistasis arises when two conditions are met: 1) a macro-molecule populates at least three structures and 2) mutations have differential effects on a least two of the inactive structures. To explore the relative magnitude of ensemble epistasis, we performed a virtual deep-mutational scan of the allosteric Ca2+ signaling protein S100A4. We found that 27% of mutation pairs gave ensemble epistasis with a magnitude on the order of thermal fluctuations, 1 kT. We observed many forms of epistasis: magnitude, sign, and reciprocal sign epistasis. Depending on the effector concentration, the same mutation pair could even exhibit different forms of epistasis. The ubiquity of ensembles in biology and its pervasiveness in our dataset suggests that ensemble epistasis may be a universal mechanism of epistasis.Significance statementAddressing the mechanistic origins of evolutionary unpredictability is critical to understanding how mutations combine to determine phenotype. Here we lay the theoretical foundations and investigate the plausibility of a potentially universal mechanism of unpredictability in macromolecules. Macromolecules often adopt a set of interchanging structures, called a thermodynamic ensemble. Mutations can change the relative population of each structure, introducing unpredictability in the mapping between genotype and phenotype. The conditions under which we expect this to arise are common in macromolecules, suggesting that this form of unpredictability may be pervasive in evolution. We conclude that the thermodynamic ensemble bakes unpredictability into biology and that future attempts to address it might incorporate this mechanistic insight.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3