An experimental demonstration of ensemble epistasis in the lac repressor

Author:

Morrison Anneliese J.,Harms Michael J.ORCID

Abstract

ABSTRACTEpistatic, non-additive, interactions between mutations reveal the functional architecture of living systems, strongly shape evolution, and present a difficult challenge for bioengineers. Interpreting and modeling epistasis requires knowledge of the mechanisms that bring it about. We recently argued that “ensemble epistasis” could be a generic mechanism for epistasis between mutations introduced into a single macromolecule. Because proteins exist as ensembles of interconverting conformations, a mutation could induce epistasis by subtly altering ensemble composition and thus the effects of subsequent mutations. Here we show experimentally that the thermodynamic ensemble does indeed yield high magnitude epistasis in the lac repressor. We observed two- and three-way epistasis in DNA binding, with magnitudes as large or larger than the individual effects of mutations. This biophysical effect propagated to substantial epistasis in gene expressionin vivo. As predicted in previous theoretical work, IPTG concentration tunes the magnitude of ensemble epistasis. Further, our observations could all be captured with a rigorous mathematical model of the lac repressor ensemble. Given that conformational ensembles are unavoidable features of macromolecules, we expect this is a ubiquitous and underappreciated cause of intramolecular epistasis.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3