Efficient mixed model approach for large-scale genome-wide association studies of ordinal categorical phenotypes

Author:

Bi Wenjian,Zhou Wei,Dey Rounak,Mukherjee Bhramar,Sampson Joshua N,Lee Seunggeun

Abstract

AbstractIn genome-wide association studies (GWAS), ordinal categorical phenotypes are widely used to measure human behaviors, satisfaction, and preferences. However, due to the lack of analysis tools, methods designed for binary and quantitative traits have often been used inappropriately to analyze categorical phenotypes, which produces inflated type I error rates or is less powerful. To accurately model the dependence of an ordinal categorical phenotype on covariates, we propose an efficient mixed model association test, Proportional Odds Logistic Mixed Model (POLMM). POLMM is demonstrated to be computationally efficient to analyze large datasets with hundreds of thousands of genetic related samples, can control type I error rates at a stringent significance level regardless of the phenotypic distribution, and is more powerful than other alternative methods. We applied POLMM to 258 ordinal categorical phenotypes on array-genotypes and imputed samples from 408,961 individuals in UK Biobank. In total, we identified 5,885 genome-wide significant variants, of which 424 variants (7.2%) are rare variants with MAF < 0.01.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Beesley, L.J. et al. The emerging landscape of health research based on biobanks linked to electronic health records: Existing resources, statistical challenges, and potential opportunities. Statistics in Medicine (2019).

2. Exploring and visualizing large-scale genetic associations by using PheWeb;Nature Genetics,2020

3. Biological and clinical insights from genetics of insomnia symptoms;Nature genetics,2019

4. Agresti, A. Categorical data analysis, (John Wiley & Sons, 2003).

5. The UK Biobank resource with deep phenotyping and genomic data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3