Amino acid transporter B0AT1 influence on ADAM17 interactions with SARS-CoV-2 receptor ACE2 putatively expressed in intestine, kidney, and cardiomyocytes

Author:

Andring Jacob T.,McKenna Robert,Stevens Bruce R.ORCID

Abstract

ABSTRACTSARS-CoV-2 exhibits significant experimental and clinical gastrointestinal, renal, and cardiac muscle tropisms responsible for local tissue-specific and systemic pathophysiology capriciously occurring in about half of COVID-19 patients. The underlying COVID-19 mechanisms engaged by these extra-pulmonary organ systems are largely unknown. We approached this knowledge gap by recognizing that neutral amino acid transporter B0AT1 (alternately called NBB, B, B0 in the literature) is a common denominator expressed nearly exclusively by three particular cell types: intestinal epithelia, renal proximal tubule epithelium, and cardiomyocytes. B0AT1 provides uptake of glutamine and tryptophan. The gut is the main depot expressing over 90% of the body’s entire pool of SARS-CoV-2 receptor angiotensin converting enzyme-2 (ACE2) and B0AT1. Recent cryo-EM studies established that ACE2 forms a thermodynamically favored dimer-of-heterodimers complex with B0AT1 assembled in the form of a dimer of two ACE2:B0AT1 heterodimers anchored in plasma membranes. Prior epithelial cell studies demonstrated ACE2 chaperone trafficking of B0AT1. This contrasts with monomeric expression of ACE2 in lung pneumocytes, in which B0AT1 is undetectable. The cell types in question also express a disintegrin and metalloproteinase-17 (ADAM17) known to cleave and shed the ectodomain of monomeric ACE2 from the cell surface, thereby relinquishing protection against unchecked renin-angiotensin-system (RAS) events of COVID-19. The present study employed molecular docking modeling to examine the interplaying assemblage of ACE2, ADAM17 and B0AT1. We report that in the monomer form of ACE2, neck region residues R652-N718 provide unimpeded access to ADAM17 active site pocket, but notably R708 and S709 remained >10-15 Å distant. In contrast, interference of ADAM17 docking to ACE2 in a dimer-of-heterodimers arrangement was directly correlated with the presence of a neighboring B0AT1 subunit complexed to the partnering ACE2 subunit of the 2ACE2:2B0AT1] dimer of heterodimers, representing the expression pattern putatively exclusive to intestinal, renal and cardiomyocyte cell types. The monomer and dimer-of-heterodimers docking models were not influenced by the presence of SARS-CoV-2 receptor binding domain (RBD) complexed to ACE2. The results collectively provide the underpinnings for understanding the role of B0AT1 involvement in COVID-19 and the role of ADAM17 steering ACE2 events in intestinal and renal epithelial cells and cardiomyocytes, with implications useful for consideration in pandemic public hygiene policy and drug development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3