Real-Time Linear Prediction of Simultaneous and Independent Movements of Two Finger Groups Using an Intracortical Brain-Machine Interface

Author:

Nason Samuel R.ORCID,Mender Matthew J.ORCID,Vaskov Alex K.ORCID,Willsey Matthew S.ORCID,Patil Parag G.ORCID,Chestek Cynthia A.ORCID

Abstract

SUMMARYModern brain-machine interfaces can return function to people with paralysis, but current hand neural prostheses are unable to reproduce control of individuated finger movements. Here, for the first time, we present a real-time, high-speed, linear brain-machine interface in nonhuman primates that utilizes intracortical neural signals to bridge this gap. We created a novel task that systematically individuates two finger groups, the index finger and the middle-ring-small fingers combined, presenting separate targets for each group. During online brain control, the ReFIT Kalman filter demonstrated the capability of individuating movements of each finger group with high performance, enabling a nonhuman primate to acquire two targets simultaneously at 1.95 targets per second, resulting in an average information throughput of 2.1 bits per second. To understand this result, we performed single unit tuning analyses. Cortical neurons were active for movements of an individual finger group, combined movements of both finger groups, or both. Linear combinations of neural activity representing individual finger group movements predicted the neural activity during combined finger group movements with high accuracy, and vice versa. Hence, a linear model was able to explain how cortical neurons encode information about multiple dimensions of movement simultaneously. Additionally, training ridge regressing decoders with independent component movements was sufficient to predict untrained higher-complexity movements. Our results suggest that linear decoders for brain-machine interfaces may be sufficient to execute high-dimensional tasks with the performance levels required for naturalistic neural prostheses.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3