Efflux mediated chlorpyrifos tolerance in Escherichia coli BL21(DE3)

Author:

Aswathi Aswathi,Pandey Ashok,Sukumaran Rajeev KORCID

Abstract

AbstractBacteria are continually challenged with variety of synthetic chemicals/xenobiotics in their immediate surroundings, including pesticides. Chlorpyrifos is one of the most commonly used organophosphate pesticides in the world. The non-environmental strain of Escherichia coli, BL21 (DE3) displayed high tolerance to chlorpyrifos but with no/negligible degradation. The intrinsic resistance mechanisms that aid the organism in its high tolerance are probed. Efflux pumps being ubiquitous in nature and capable of conferring resistance against wide variety of xenobiotics were found to be over-expressed in the presence of CP. Also, an efflux pump inhibitor PAβN increased the susceptibility of E. coli to chlorpyrifos due to the intracellular accumulation of CP. The tripartite efflux pump EmrAB-TolC with increased expression in both transcript and protein on CP exposure, might play a major role in CP tolerance. The transcriptional regulators involved in multidrug resistance along with transporters belonging to all the major families conferring antimicrobial resistance were up-regulated. Also up-regulated were the genes involved in phopshonate metabolism and all the genes in the copper or silver export system. The common resistance mechanisms i.e, activation of efflux pumps between CP, antibacterial metals and antibiotics resistance might result in cross-resistance, ultimately increasing the prevalence of multidrug resistant strains, making infections hard to treat.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Public Opinion on Performance of Local-Self Government in Chennai;International Journal of Advanced Research in Science, Communication and Technology;2024-06-23

2. Pesticide Bioremediation: OMICs Technologies for Understanding the Processes;Pesticides Bioremediation;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3