Transcriptomic signatures of sex-specific nicotine sensitization and imprinting of self-administration in rats inform GWAS findings on human addiction phenotypes

Author:

Kozlova AlenaORCID,Butler Robert RORCID,Zhang SiweiORCID,Ujas Thomas,Zhang HanwenORCID,Steidl Stephan,Sanders Alan R.ORCID,Pang Zhiping P.ORCID,Vezina Paul,Duan JubaoORCID

Abstract

AbstractRodents are frequently used to model drug addiction, yet their genetic relevance to human addictive behaviors especially the mounting genome-wide association study (GWAS) findings is poorly understood. Considering a possible gateway drug role of nicotine (NIC), we modeled NIC addiction, specifically NIC sensitization (SST) and self-administration (SA), in F1 progeny of inbred Envigo rats (F344/BN) and conducted integrative genomics analyses. We unexpectedly observed male-specific NIC SST and a parental effect of SA only present in paternal F344 crosses. Transcriptional profiling in the ventral tegmental area (VTA) and nucleus accumbens (NAc) core and shell further revealed sex and brain region-specific transcriptomic signatures of SST and SA. We found that genes associated with SST and SA were enriched for those related to synaptic processes, myelin sheath, and tobacco use disorder or chemdependency. Interestingly, SST-associated genes were often downregulated in male VTA but upregulated in female VTA, and strongly enriched for smoking GWAS risk variants, possibly explaining the male-specific SST. For SA, we found widespread region-specific allelic imbalance of expression (AIE), of which genes showing AIE bias towards paternal F344 alleles in NAc core were strongly enriched for SA-associated genes and for GWAS risk variants of smoking initiation, likely contributing to the parental effect of SA. The transcriptional signatures of sex-specific nicotine SST and SA suggest a mechanistic link between genes underlying these processes and human nicotine addiction, providing a resource for understanding the biology underlying the GWAS findings on human smoking and other addictive phenotypes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3