A Novel Surgical Method for Continuous Intra-Portal Infusion of Gut Microbial Metabolites in Mice

Author:

Orabi Danny,Osborn Lucas J.ORCID,Fung Kevin,Aucejo Federico,Choucair Ibrahim,DeLucia BeckeyORCID,Wang Zeneng,Claesen JanORCID,Brown J. MarkORCID

Abstract

AbstractGut microbial-derived metabolites have been shown to play key roles in human physiology and disease. However, establishing mechanistic links between gut microbial metabolites and disease pathogenesis in animal models presents many challenges. The major route of absorption for microbe-derived small molecules is venous drainage via the portal vein to the liver. In the event of extensive liver first pass- or presystemic hepatic metabolism, the route of administration of these metabolites becomes critical. Here we describe a novel portal vein cannulation technique using a subcutaneously implanted osmotic pump to achieve continuous portal vein infusion in mice. First, the microbial metabolite trimethylamine (TMA) was administered over 4 weeks and compared to a vehicle control. Using a liquid chromatography-tandem mass spectrometry (LC-MS/MS), an increase in peripheral plasma levels of TMA and its host liver-derived co-metabolite trimethylamine-N-oxide (TMAO) were observed in a sexually-dimorphic manner. Next, 4-hydroxyphenylacetic acid (4-HPAA), a structurally distinct microbial metabolite that undergoes extensive hepatic first pass metabolism, was administered intraportally to examine effects on hepatic gene expression. As expected, there was no difference in peripheral plasma 4-HPAA levels yet liver tissue demonstrated higher levels of 4-HPAA when compared to the control group. More importantly, significant changes were observed in hepatic gene expression using an unbiased RNA sequencing approach. Collectively, this work describes a novel method for administering gut microbe-derived metabolites via the portal vein, mimicking their physiologic delivery in vivo.ImportanceRecent efforts have underscored the importance of the gut microbial community as a meta-endocrine organ impacting host physiology through systemic delivery of gut-microbial metabolites [Brown and Hazen, 2015]. Microbial metabolites are first delivered to the liver via the portal vein following venous drainage of the gastrointestinal tract. This route of absorption is often crucial by allowing the liver to biotransfrom these molecules prior to entering the peripheral circulation. Microbial metabolites are frequently studied in animal models by incorporation into diet or drinking water. This method falls short as inconsistent oral intake, inconsistent gastrointestinal absorption, and further modification of the metabolite by gut microbes yield imprecise levels of drug delivery. In efforts to overcome this, the physiological impact of microbial metabolites is often studied by intermittent exogenous administration of a metabolite in a non-physiologically relevant manner such as intravenous injection, intraperitoneal injection, or subcutaneous administration, all placing a relatively large proportion of the metabolite directly into the peripheral circulation. Although these approaches can effectively raise circulating metabolites levels in some cases, they do not mimic the natural delivery of gut microbial-derived small molecules through the portal circulation to the liver. Here we describe a novel surgical method to continuously deliver precise amounts of gut microbial metabolites intraportally to better recapitulate the natural systemic delivery route of microbial metabolites to the liver. This model will improve the interrogation of gut microbial metabolites and their associations to disease by providing an unmatched level of resolution when manipulating the portal blood metabolome.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3