An Innovative Non-Pharmaceutical Intervention to Mitigate SARS-CoV02 Spread: Probability Sampling to Identify and Isolate Asymptomatic Cases

Author:

Williams Nathalie E.,Yao Xiaozheng,Pal Ankita,Qian Xiaolu,Rathod Mansi,Xu Chang,Dobra Adrian

Abstract

AbstractStudies estimate that a substantial proportion of SARS-CoV-2 transmission occurs through individuals who do not exhibit symptoms. Mitigation strategies test only those who are moderately to severely symptomatic, excluding the substantial portion of cases that are asymptomatic yet still infectious and likely responsible for a large proportion of the virus’ spread (1-8). While isolating asymptomatic cases will be necessary to effectively control viral spread, these cases are functionally invisible and there is no current method to identify them for isolation. To address this major omission in COVID-19 control, we develop a strategy, Sampling-Testing-Quarantine (STQ), for identifying and isolating individuals with asymptomatic SARS-CoV-2 in order to mitigate the epidemic. STQ uses probability sampling in the general population, regardless of symptoms, then isolates the individuals who test positive along with their household members who are high probability for asymptomatic infections. To test the potential efficacy of STQ, we use an agent-based model, designed to computationally simulate the epidemic in the Seattle with infection parameters, like R0 and asymptomatic fraction, derived from population data. Our results suggest that STQ can substantially slow and decrease the spread of COVID-19, even in the absence of school and work shutdowns. Results also recommend which sampling techniques, frequency of implementation, and population subject to isolation are most efficient in reducing spread with limited numbers of tests.Significance StatementA substantial portion of SARS-CoV-2 infections are spread through asymptomatic carriers. Until a vaccine is developed, research indicates an urgent need to identify these asymptomatic infections to control COVID-19, but there is currently no effective strategy to do so. In this study, we develop such a strategy, a procedure called Sampling-Testing-Quarantine (STQ), that combines techniques from survey methods for sampling from the general population and testing and isolation techniques from epidemiology. With computational simulations, we demonstrate that STQ procedures can dramatically decrease and slow COVID-19 spread, even in the absence of widespread work, school, and community lockdowns. We also find particular implementation strategies (including sampling techniques, frequencies of implementation, and people who are subject to isolation) are most efficient in mitigating spread.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3