Clustering and erratic movement patterns of syringe-injected versus mosquito-inoculated malaria sporozoites underlie decreased infectivity

Author:

de Korne C.M.ORCID,Winkel B.M.F.,van Oosterom M.N.,Chevalley-Maurel S.,Houwing H.M.,Sijtsma J.C.,Baalbergen E.,Franke-Fayard B.M.D.,van Leeuwen F.W.B.,Roestenberg M.

Abstract

ABSTRACTLive attenuated malaria sporozoites are promising vaccine candidates, however, their efficacy critically depends on their capability to reach and infect the host liver. Administration via mosquito inoculation is by far the most potent method for inducing immunity, but highly unpractical. Here, we observed that intradermal syringe-injected Plasmodium berghei sporozoites (syrSPZ) were three-fold less efficient in migrating to and infecting mouse liver compared to mosquito-inoculated sporozoites (msqSPZ). This was related to a clustered dermal distribution (2-fold decreased median distance between syrSPZ vs msqSPZ) and, more importantly, a 1.4-fold significantly slower and more erratic movement pattern. These erratic movement patterns were likely caused by alteration of dermal tissue morphology (>15 μm intercellular gaps) due to injection pressure and may critically decrease sporozoite infectivity. These results suggest that novel microvolume-based administration technologies hold promise for replicating the success of mosquito-inoculated live attenuated sporozoite vaccines.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3