Author:
Pelletier James F.,Sun Lijie,Wise Kim S.,Assad-Garcia Nacyra,Karas Bogumil J.,Deerinck Thomas J.,Ellisman Mark H.,Mershin Andreas,Gershenfeld Neil,Chuang Ray-Yuan,Glass John I.,Strychalski Elizabeth A.
Abstract
AbstractGenomically minimal cells, such as JCVI-syn3.0, offer a platform to clarify genes underlying core physiological processes. While this minimal cell includes genes essential for population growth, the physiology of its single cells remained uncharacterized. To investigate striking morphological variation in JCVI-syn3.0 cells, we present an approach to characterize cell propagation and determine genes affecting cell morphology. Microfluidic chemostats allowed observation of intrinsic cell dynamics resulting in irregular morphologies. The addition of 19 genes not retained in JCVI-syn3.0 generated JCVI-syn3A, which presents significantly less morphological variation than JCVI-syn3.0. We further identified seven of these 19 genes, including two known cell division genes ftsZ and sepF and five genes of unknown function, required together to restore cell morphology and division similar to JCVI-syn1.0. This surprising result emphasizes the polygenic nature of cell morphology, as well as the importance of a Z-ring and membrane properties in the physiology of genomically minimal cells.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献