Codon Usage Bias Levels Predict Taxonomic Identity and Genetic Composition

Author:

Khomtchouk Bohdan B.

Abstract

AbstractIn this study, we investigate how an organism’s codon usage bias levels can serve as a predictor and classifier of various genomic and evolutionary features across the three kingdoms of life (archaea, bacteria, eukarya). We perform secondary analysis of existing genetic datasets to build several artificial intelligence (AI) and machine learning models trained on over 13,000 organisms that show it is possible to accurately predict an organism’s DNA type (nuclear, mitochondrial, chloroplast) and taxonomic identity simply using its genetic code (64 codon usage frequencies). By leveraging advanced AI and machine learning methods to accurately identify evolutionary origins and genetic composition from codon usage patterns, our study suggests that the genetic code can be utilized to train accurate machine learning classifiers of taxonomic and phylogenetic features. Our dataset and analyses are made publicly available on Github and the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Codon+usage) to facilitate open-source reproducibility and community engagement.

Publisher

Cold Spring Harbor Laboratory

Reference12 articles.

1. Brett Lantz . Machine Learning With R. Lazy Learning - Classification Using Nearest Neighbors. In Packet Publishing, 2015, 2nd edition, pages 65–86.

2. Summary for Policymakers

3. Greedy Function Approximation: A Gradient Boosting Machine;The Annals of Statistics,2001

4. Suzuki, K. , Krenker, A. , Bester, J. , and Kos, A. Introduction to the Artificial Neural Networks, Artificial Neural Networks - Methodological Advances and Biomedical Applications. 2011. https://doi:10.5772/644

5. Mitchell, T. M. Machine Learning. 1997. pp. 177–198. McGraw Hill, New York, NY.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3