Anomaly detection in the probability simplex under different geometries

Author:

Legaria Uriel,Mota Sergio,Martinez Sergio,Cobá Alfredo,Chable Argenis,Neme AntonioORCID

Abstract

AbstractAn open problem in data science is that of anomaly detection. Anomalies are instances that do not maintain a certain property that is present in the remaining observations in a dataset. Several anomaly detection algorithms exist, since the process itself is ill-posed mainly because the criteria that separates common or expected vectors from anomalies are not unique. In the most extreme case, data is not labelled and the algorithm has to identify the vectors that are anomalous, or assign a degree of anomaly to each vector. The majority of anomaly detection algorithms do not make any assumptions about the properties of the feature space in which observations are embedded, which may affect the results when those spaces present certain properties. For instance, compositional data such as normalized histograms, that can be embedded in a probability simplex, constitute a particularly relevant case. In this contribution, we address the problem of detecting anomalies in the probability simplex, relying on concepts from Information Geometry, mainly by focusing our efforts in the distance functions commonly applied in that context. We report the results of a series of experiments and conclude that when a specific distance-based anomaly detection algorithm relies on Information Geometry-related distance functions instead of the Euclidean distance, the performance is significantly improved.

Funder

PAPIIT-DGAPA, Universidad Nacional Autónoma de México

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,Geometry and Topology,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3