The epistemological foundations of data science: a critical review

Author:

Desai JulesORCID,Watson DavidORCID,Wang Vincent,Taddeo MariarosariaORCID,Floridi LucianoORCID

Abstract

AbstractThe modern abundance and prominence of data have led to the development of “data science” as a new field of enquiry, along with a body of epistemological reflections upon its foundations, methods, and consequences. This article provides a systematic analysis and critical review of significant open problems and debates in the epistemology of data science. We propose a partition of the epistemology of data science into the following five domains: (i) the constitution of data science; (ii) the kind of enquiry that it identifies; (iii) the kinds of knowledge that data science generates; (iv) the nature and epistemological significance of “black box” problems; and (v) the relationship between data science and the philosophy of science more generally.

Publisher

Springer Science and Business Media LLC

Subject

General Social Sciences,Philosophy

Reference67 articles.

1. Alaa, A. M., & van der Schaar, M. (2019). Demystifying Black-box models with symbolic metamodels. In Advances in Neural Information Processing Systems. Curran Associates, Inc. Retrieved August 11, 2022, from https://papers.nips.cc/paper/2019/hash/567b8f5f423af15818a068235807edc0-Abstract.html.

2. Alemany Oliver, M., & Vayre, J.-S. (2015). Big data and the future of knowledge production in marketing research: Ethics, digital traces, and abductive reasoning. Journal of Marketing Analytics, 3(1), 5–13. https://doi.org/10.1057/jma.2015.1

3. Anderson, C. (2008). The end of theory: The data deluge makes the scientific method obsolete, Wired. Retrieved December 14, 2020, from https://www.wired.com/2008/06/pb-theory/.

4. Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Pad, D. (2019) Invariant risk minimization. arXiv preprint, arXiv:1907.02893.

5. Bareinboim, E., Lee, S., & Zhang, J. (2021) An introduction to causal reinforcement learning. Columbia CausalAI Laboratory, Technical Report (R-65).

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3