Linking Enzyme Upregulation to Autophagic Failure: A Potential Biomarker for GM1 Gangliosidosis

Author:

Smith Sarah,Larsen JessicaORCID

Abstract

AbstractWith an increasing aging population, neurodegenerative diseases are having an increased impact on society. Typically, these diseases are diagnosed significantly past symptom onset, decreasing the possibility of effective treatment. A non-invasive biomarker and specific target are needed to diagnose and treat the disease before late-stage symptoms. GM1 Gangliosidosis is a lysosomal storage disease where lysosomal enzyme β-galactosidase is missing. As a result, GM1 ganglioside is not broken down and accumulates in the cell, ultimately leading to cell death. One of the main aspects of GM1 Gangliosidosis, and other neurodegenerative diseases, is impaired autophagy: reduced fusion of autophagosomes and lysosomes to degrade cellular waste.In this paper, we show that healthy cells (NSV3) have approximately 13 times more co-localization of lysosomes and autophagosomes than GM1 Gangliosidosis-diseased cells (GM1SV3), as demonstrated via immunofluorescence. GM1SV3 fold normal enzyme activity of β-galactosidase was downregulated while mannosidase, and hexosaminidase A were both upregulated. When inducing impaired autophagy in NSV3 via starvation, co-localization gradually decreases with increased starvation time. Most notably, after 48-hour starvation, healthy cells (NSV3) showed no significant difference in co-localization compared to GM1SV3. NSV3 under starvation conditions showed a significant increase between time starved and fold normal enzyme activity, with a positive correlation being observed. Activities of mannosidase, and hexosaminidase A of starved NSV3 closely resemble, and surpass, GM1SV3 after 12-hour starvation.These observations have the potential to expand the conversation regarding impaired autophagy as a potential biomarker for disease progression and diagnostics and as a treatment target.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3