The price of a bit: energetic costs and the evolution of cellular signaling

Author:

Wang Teng-Long,Kuznets-Speck Benjamin,Broderick Joseph,Hinczewski Michael

Abstract

Recent experiments have uncovered a fundamental information scale for cellular signaling networks: the correlation between input and output concentrations of molecules in a signaling pathway corresponds to at most 1-3 bits of mutual information. Our understanding of the physical constraints and evolutionary pressures that determine this scale remains incomplete. By focusing on a basic element of signaling pathways, the kinase-phosphatase enzymatic push-pull loop, we highlight the pivotal role played by energy resources available for signaling and their expenditure: the chemical potential energy of ATP hydrolysis, and the rate of ATP consumption. Scanning a broad range of reaction parameters based on enzymatic databases, we find that ATP chemical potentials in modern organisms are just above the threshold necessary to achieve empirical mutual information values. We also derive an analytical relation for the minimum ATP consumption required to maintain a certain signal fidelity across a range of input frequencies. Attempting to increase signal fidelity beyond a few bits lowers the bandwidth, the maximum characteristic signal frequency that the network can handle at a given energy cost. The observed information scale thus represents a balancing act between fidelity and the ability to process fast-changing environmental signals. Our analytical relation defines a performance limit for kinase-phosphatase networks, and we find evidence that a component of the yeast osmotic shock pathway may be close to the optimality line. By quantifying the evolutionary pressures that operate on these networks, we argue that this is not a coincidence: natural selection on energy expenditures is capable of pushing signaling systems toward optimality, particularly in unicellular organisms. Our theoretical framework is directly verifiable using existing experimental techniques, and predicts that more examples of such optimality should exist in nature.

Publisher

Cold Spring Harbor Laboratory

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3