Higher temperatures worsen the effects of mutations on protein stability

Author:

Kontopoulos Dimitrios - GeorgiosORCID,Patmanidis IliasORCID,Barraclough Timothy G.ORCID,Pawar SamraatORCID

Abstract

AbstractUnderstanding whether and how temperature increases alter the effects of mutations on protein stability is crucial for understanding the limits to thermal adaptation by organisms. Currently, it is generally assumed that the stability effects of mutations are independent of temperature. Yet, mutations should become increasingly destabilizing as temperature rises due to the increase in the energy of atoms. Here, by performing an extensive computational analysis on the essential enzyme adenylate kinase in prokaryotes, we show, for the first time, that mutations become more destabilizing with temperature both across and within species. Consistent with these findings, we find that substitution rates of prokaryotes decrease nonlinearly with temperature. Our results suggest that life on Earth likely originated in a moderately thermophilic and thermally fluctuating environment, and indicate that global warming should decrease the per-generation rate of molecular evolution of prokaryotes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3