High temperature delays and low temperature accelerates evolution of a new protein phenotype

Author:

Zheng JiaORCID,Guo NingORCID,Huang Yuxiang,Guo Xiang,Wagner AndreasORCID

Abstract

AbstractSince the origin of life, temperatures on earth have fluctuated both on short and long time scales. How such changes affect the rate at which Darwinian evolution can bring forth new phenotypes remains unclear. On the one hand, high temperature may accelerate phenotypic evolution because it accelerates most biological processes. On the other hand, it may slow phenotypic evolution, because proteins are usually less stable at high temperatures and therefore less evolvable. Here, to test these hypotheses experimentally, we evolved a green fluorescent protein in E. coli towards the new phenotype of yellow fluorescence at different temperatures. Yellow fluorescence evolved most slowly at high temperature and most rapidly at low temperature, in contradiction to the first hypothesis. Using high-throughput population sequencing, protein engineering, and biochemical assays, we determined that this is due to the protein-destabilizing effect of neofunctionalizing mutations. Destabilization is highly detrimental at high temperature, where neofunctionalizing mutations cannot be tolerated. Their detrimental effects can be mitigated through excess stability at low temperature, leading to accelerated adaptive evolution. By modifying protein folding stability, temperature alters the accessibility of mutational paths towards high-fitness genotypes. Our observations have broad implications for our understanding of how temperature changes affect evolutionary adaptations and innovations.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3