Author:
Deatherage Daniel E.,Kepner Jamie L.,Bennett Albert F.,Lenski Richard E.,Barrick Jeffrey E.
Abstract
Isolated populations derived from a common ancestor are expected to diverge genetically and phenotypically as they adapt to different local environments. To examine this process, 30 populations ofEscherichia coliwere evolved for 2,000 generations, with six in each of five different thermal regimes: constant 20 °C, 32 °C, 37 °C, 42 °C, and daily alternations between 32 °C and 42 °C. Here, we sequenced the genomes of one endpoint clone from each population to test whether the history of adaptation in different thermal regimes was evident at the genomic level. The evolved strains had accumulated ∼5.3 mutations, on average, and exhibited distinct signatures of adaptation to the different environments. On average, two strains that evolved under the same regime exhibited ∼17% overlap in which genes were mutated, whereas pairs that evolved under different conditions shared only ∼4%. For example, all six strains evolved at 32 °C had mutations innadR, whereas none of the other 24 strains did. However, a population evolved at 37 °C for an additional 18,000 generations eventually accumulated mutations in the signature genes strongly associated with adaptation to the other temperature regimes. Two mutations that arose in one temperature treatment tended to be beneficial when tested in the others, although less so than in the regime in which they evolved. These findings demonstrate that genomic signatures of adaptation can be highly specific, even with respect to subtle environmental differences, but that this imprint may become obscured over longer timescales as populations continue to change and adapt to the shared features of their environments.
Funder
HHS | National Institutes of Health
Cancer Prevention and Research Institute of Texas
National Science Foundation
DOD | Defense Advanced Research Projects Agency
Publisher
Proceedings of the National Academy of Sciences
Reference59 articles.
1. Mayr E (1970) Populations, Species, and Evolution (Belknap, Cambridge, MA).
2. Grant PR Grant BR (2011) How and Why Species Multiply: The Radiation of Darwin’s Finches (Princeton Univ Press, Princeton, NJ).
3. The genetic causes of convergent evolution
4. Laws of temperature and control of the geographic distribution of terrestrial animals and plants;Merriam;Natl Geogr Mag,1894
5. A Map of Local Adaptation in
Arabidopsis thaliana
Cited by
111 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献