Evolution recovers the fitness ofAcinetobacter baylyistrains with large deletions through mutations in deletion-specific targets and global post-transcriptional regulators

Author:

Gifford IsaacORCID,Suárez Gabriel A.,Barrick Jeffrey E.ORCID

Abstract

AbstractOrganelles and endosymbionts have naturally evolved dramatically reduced genome sizes compared to their free-living ancestors. Synthetic biologists have purposefully engineered streamlined microbial genomes to create more efficient cellular chassis and define the minimal components of cellular life. During natural or engineered genome streamlining, deletion of many non-essential genes in combination often reduces bacterial fitness for idiosyncratic or unknown reasons. We investigated how and to what extent laboratory evolution could overcome these defects in six variants of the transposon-freeAcinetobacter baylyistrain ADP1-ISx that each had a deletion of a different 22- to 42-kilobase region and two strains with larger deletions of 70 and 293 kilobases. We evolved replicate populations of ADP1-ISx and each deletion strain for ∼300 generations in a chemically defined minimal medium or a complex medium and sequenced the genomes of endpoint clonal isolates. Fitness increased in all cases that were examined except for two ancestors that each failed to improve in one of the two environments. Mutations affecting nine protein-coding genes and two small RNAs were significantly associated with one of the two environments or with certain deletion ancestors. The global post-transcriptional regulatorsrnd(ribonuclease D),csrA(RNA-binding carbon storage regulator), andhfq(RNA-binding protein and chaperone) were frequently mutated across all strains, though the incidence and effects of these mutations on gene function and bacterial fitness varied with the ancestral deletion and evolution environment. Mutations in this regulatory network likely compensate for how an earlier deletion of a transposon in the ADP1-ISx ancestor of all the deletion strains restoredcsrAfunction. More generally, our results demonstrate that fitness lost during genome streamlining can usually be regained rapidly through laboratory evolution and that recovery tends to occur through a combination of deletion-specific compensation and global regulatory adjustments.Author SummaryGenome streamlining reduces the complexity of organisms by eliminating large, non-essential portions of their genomes. This process occurs naturally in endosymbiont lineages and can be engineered to create microbial chassis that operate more efficiently and predictably. However, genome reduction often compromises the fitness of an organism when genes and combinations of genes are deleted that, while not essential, are advantageous. In this study, we used laboratory evolution to improve the fitness of a collection of Acinetobacter baylyi strains with large engineered deletions. In most cases, we found that spontaneous mutations could recover fitness lost due to deletions spanning many genes in these strains. These beneficial mutations were sometimes general, occurring in multiple strains and environments regardless of what genes were deleted, or specific, observed solely or more often in one environment or in strains with certain deletions. Mutations affecting proteins and small RNAs involved in post-transcriptional regulation of gene expression were especially common. Thus, recovering fitness often involves a combination of mutations that adjust global regulatory networks and compensate for lost gene functions. More broadly, our findings validate using laboratory evolution as a strategy for improving the fitness of reduced-genome strains created for biotechnology applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3