Abstract
ABSTRACTNearly all bacteria are encased in a peptidoglycan cell wall, an essential crosslinked matrix of polysaccharide strands and short peptide stems. In the Gram-negative model organism Escherichia coli, more than forty cell wall synthases and autolysins coordinate the growth and division of the peptidoglycan sacculus in the periplasm. The precise contribution of many of these enzymes to cell wall metabolism remains unclear due to significant apparent redundancy, particularly among the cell wall autolysins. E. coli produces three major LytC-type-N-acetylmuramoyl-L-alanine amidases, which share a role in separating the newly formed daughter cells during cytokinesis. Here, we reveal two of the three amidases exhibit growth medium-dependent changes in activity. Specifically, we report acidic growth conditions stimulate AmiB—and to a lesser extent, AmiC—activity. Combining computational and genetic analysis, we demonstrate that low pH-dependent stimulation of AmiB requires three periplasmic amidase activators: EnvC, NlpD, and YgeR. Altogether, our findings support overlapping, but not redundant, roles for the E. coli amidases in cell separation and illuminate the physiochemical environment as an important mediator of cell wall enzyme activity.IMPORTANCEPenicillin and related β-lactam antibiotics targeting the bacterial cell wall synthesis are among the most commonly prescribed antimicrobials worldwide. However, rising rates of antibiotic resistance and tolerance jeopardize their continued clinical use. Development of new cell wall active therapeutics, including those targeting cell wall autolysins, has been stymied in part due to high levels of apparent enzymatic redundancy. In this study, we report a subset of E. coli amidases involved in cell separation during cell division are not redundant and instead are preferentially active during growth in distinct pH environments. Specifically, we discover E. coli amidases AmiB and AmiC are activated by acidic pH. Three semi-redundant periplasmic regulators—NlpD, EnvC, and YgeR—collectively mediate low pH-dependent stimulation of amidase activity. This discovery contributes to our understanding of how the cell wall remains robust across diverse environmental conditions and reveals opportunities for the development of condition-specific antimicrobial agents.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献