Abstract
Gram-positive bacteria assemble a multilayered cell wall that provides tensile strength to the cell. The cell wall is composed of glycan strands cross-linked by nonribosomally synthesized peptide stems. Herein, we modify the peptide stems of the Gram-positive bacterium Bacillus subtilis with noncanonical electrophilic d-amino acids, which when in proximity to adjacent stem peptides form novel covalent 5,3-cross-links. Approximately 20% of canonical cell-wall cross-links can be replaced with synthetic cross-links. While a low level of synthetic cross-link formation does not affect B. subtilis growth and phenotype, at higher levels cell growth is perturbed and bacteria elongate. A comparison of the accumulation of synthetic cross-links over time in Gram-negative and Gram-positive bacteria highlights key differences between them. The ability to perturb cell-wall architecture with synthetic building blocks provides a novel approach to studying the adaptability, elasticity, and porosity of bacterial cell walls.
Publisher
Proceedings of the National Academy of Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献