Co-evolutionary Distance Prediction for Flexibility Prediction

Author:

Schwarz DominikORCID,Georges Guy,Kelm Sebastian,Shi Jiye,Vangone Anna,Deane Charlotte M.ORCID

Abstract

ABSTRACTCo-evolution analysis can be used to accurately predict residue-residue contacts from multiple sequence alignments. The introduction of machine-learning techniques has enabled substantial improvements in precision and a shift from predicting binary contacts to predicting distances between pairs of residues. These developments have significantly improved the accuracy of de novo prediction of static protein structures. Here we examine the potential of these residue-residue distance predictions to predict protein flexibility rather than static structure. We used DMPfold to predict distance distributions for every residue pair in a set of proteins that showed both rigid and flexible behaviour. Residue pairs that were in contact in at least one reference structure were considered and classified as rigid, flexible or neither. The predicted distance distribution of each residue pair was analysed for local maxima of probability indicating the most likely distance or distances between a pair of residues. The average number of local maxima per residue pair was found to be different between the sets of rigid and flexible residue pairs. Flexible residue pairs more often had multiple local maxima in their predicted distance distribution than rigid residue pairs suggesting that the shape of predicted distance distributions is predictive of rigidity or flexibility of residue pairs.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3