Abstract
ABSTRACTProtein structure prediction has long been considered a gateway problem for understanding protein folding. Recent advances in deep learning have achieved unprecedented success at predicting a protein’s crystal structure, but whether this achievement relates to a better modelling of the folding process remains an open question. In this work, we compare the pathways generated by state-of-the-art protein structure prediction methods to experimental folding data. The methods considered were AlphaFold 2, RoseTTAFold, trRosetta, RaptorX, DMPfold, EVfold, SAINT2 and Rosetta. We find evidence that their simulated dynamics capture some information about the folding pathwhay, but their predictive ability is worse than a trivial classifier using sequence-agnostic features like chain length. The folding trajectories produced are also uncorrelated with parameters such as intermediate structures and the folding rate constant. These results suggest that recent advances in protein structure prediction do not yet provide an enhanced understanding of the principles underpinning protein folding.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献