A synthetic oligo library and sequencing approach reveals an insulation mechanism encoded within bacterial σ54promoters

Author:

Levy Lior,Anavy Leon,Solomon Oz,Cohen Roni,Brunwasser-Meirom Michal,Ohayon Shilo,Atar Orna,Goldberg Sarah,Yakhini Zohar,Amit Roee

Abstract

SummaryWe use an oligonucleotide library of over 10000 variants together with a synthetic biology approach to identify an insulation mechanism encoded within a subset of σ54promoters. Insulation manifests itself as dramatically reduced protein expression for a downstream gene that may be expressed by transcriptional read-through. The insulation we observe is strongly associated with the presence of short CT-rich motifs (3-5 bp), positioned within 25 bp upstream of the Shine-Dalgarno (SD) motif of the silenced gene. We hypothesize that insulation is effected by binding of the RBS to the upstream CT-rich motif. We provide evidence to support this hypothesis using mutations to the CT-rich motif and gene expression measurements on multiple sequence variants. Modelling is also consistent with this hypothesis. We show that the strength of the silencing, effected by insulation, depends on the location and number of CT-rich motifs encoded within the promoters. Finally, we show that inE.colithese insulator sequences are preferentially encoded within σ54promoters as compared to other promoter types, suggesting a regulatory role for these sequences in natural contexts. Our findings suggest that context-related regulatory effects may often be due to sequence-specific interactions encoded sparsely by short motifs that are not easily detected by lower throughput studies. Such short sequence-specific phenomena can be uncovered with a focused OL design that filters out the sequence noise, as exemplified herein.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3