RNA helicase, DDX27 regulates skeletal muscle growth and regeneration by modulation of translational processes

Author:

Bennett Alexis H,O’Donohue Marie-Francoise,Gundry Stacey R.,Chan Aye T.,Widrick Jeffery,Draper Isabelle,Chakraborty Anirban,Zhou Yi,Zon Leonard I.,Gleizes Pierre-Emmanuel,Beggs Alan H.,Gupta Vandana A

Abstract

ABSTRACTGene expression in a tissue-specific context depends on the combined efforts of epigenetic, transcriptional and post-transcriptional processes that lead to the production of specific proteins that are important determinants of cellular identity. Ribosomes are a central component of the protein biosynthesis machinery in cells; however, their regulatory roles in the translational control of gene expression in skeletal muscle remain to be defined. In a genetic screen to identify critical regulators of myogenesis, we identified a DEAD-Box RNA helicase, DDX27, that is required for skeletal muscle growth and regeneration. We demonstrate that DDX27 regulates ribosomal RNA (rRNA) maturation, and thereby the ribosome biogenesis and the translation of specific transcripts during myogenesis. These findings provide insight into the translational regulation of gene expression in myogenesis and suggest novel functions for ribosomes in regulating gene expression in skeletal muscles.AUTHOR SUMMARYInherited skeletal muscle diseases are the most common form of genetic disorders with primary abnormalities in the structure and function of skeletal muscle resulting in the impaired locomotion in affected patients. A major hindrance to the development of effective therapies is a lack of understanding of biological processes that promote skeletal muscle growth. By performing a forward genetic screen in zebrafish we have identified mutation in a RNA helicase that leads to perturbations of ribosomal biogenesis pathway and impairs skeletal muscle growth and regeneration. Therefore, our studies have identified novel ribosome-based disease processes that may be therapeutic modulated to restore muscle function in skeletal muscle diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3