DDX24, a D-E-A-D box RNA helicase, is required for muscle fiber organization and anterior pole specification essential for head regeneration in planarians

Author:

Sarkar Souradeep R.ORCID,Dubey Vinay Kumar,Jahagirdar AnushaORCID,Lakshmanan VairavanORCID,Haroon Mohamed MohamedORCID,Sowndarya Sai,Sowdhamini Ramanathan,Palakodeti DasaradhiORCID

Abstract

ABSTRACTPlanarians have a remarkable ability to undergo whole-body regeneration. The timely establishment of polarity at the wound site followed by the specification of the organizing centers- the anterior pole and the posterior pole, are indispensable for successful regeneration. In planarians, polarity, pole, and positional-information determinants are predominantly expressed by muscles. The molecular toolkit that enables this functionality of planarian muscles however remains poorly understood. Here we report that SMED_DDX24, a D-E-A-D Box RNA helicase and the homolog of human DDX24, is critical for planarian head regeneration. DDX24 is enriched in muscles and its knockdown leads to defective muscle-fiber organization and failure to re-specify anterior pole/organizer. Overall, loss of DDX24 manifests into gross misregulation of many well-characterized positional-control genes and patterning-control genes, necessary for organogenesis and tissue positioning and tissue patterning. In addition, wound-induced Wnt signalling was also upregulated in ddx24 RNAi animals. Canonical WNT-βCATENIN signalling is known to suppress head identity throughout bilateria, including planarians. Modulating this Wnt activity by β-catenin-1 RNAi, the effector molecule of this pathway, partially rescues the ddx24 RNAi phenotype, implying that a high Wnt environment in ddx24 knockdown animals likely impedes their normal head regeneration. Furthermore, at a sub-cellular level, RNA helicases are known to regulate muscle mass and function by regulating their translational landscape. ddx24 knockdown leads to the downregulation of large subunit ribosomal RNA and the 80S ribosome peak, implying its role in ribosome biogenesis and thereby influencing the translational output. This aspect seems to be an evolutionarily conserved role of DDX24. In summary, our work demonstrates the role of a D-E-A-D box RNA helicase in whole-body regeneration through muscle fiber organization, and pole and positional-information re-specification, likely mediated through translation regulation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3