Hotspot coevolution at protein-protein interfaces is a key identifier of native protein complexes

Author:

Mishra Sambit K.,Cooper Sarah J.ORCID,Parks Jerry M.ORCID,Mitchell Julie C.ORCID

Abstract

AbstractProtein-protein interactions play a key role in mediating numerous biological functions, with more than half the proteins in living organisms existing as either homo- or hetero-oligomeric assemblies. Protein subunits that form oligomers minimize the free energy of the complex, but exhaustive computational search-based docking methods have not comprehensively addressed the protein docking challenge of distinguishing a natively bound complex from non-native forms. In this study, we propose a scoring function, KFC-E, that accounts for both conservation and coevolution of putative binding hotspot residues at protein-protein interfaces. For a benchmark set of 53 bound complexes, KFC-E identifies a near-native binding mode as the top-scoring pose in 38% and in the top 5 in 55% of the complexes. For a set of 17 unbound complexes, KFC-E identifies a near-native pose in the top 10 ranked poses in more than 50% of the cases. By contrast, a scoring function that incorporates information on coevolution at predicted non-hotspots performs poorly by comparison. Our study highlights the importance of coevolution at hotspot residues in forming natively bound complexes and suggests a novel approach for coevolutionary scoring in protein docking.Author SummaryA fundamental problem in biology is to distinguish between the native and non-native bound forms of protein-protein complexes. Experimental methods are often used to detect the native bound forms of proteins but, are demanding in terms of time and resources. Computational approaches have proven to be a useful alternative; they sample the different binding configurations for a pair of interacting proteins and then use an heuristic or physical model to score them. In this study we propose a new scoring approach, KFC-E, which focuses on the evolutionary contributions from a subset of key interface residues (hotspots) to identify native bound complexes. KFC-E capitalizes on the wealth of information in protein sequence databases by incorporating residue-level conservation and coevolution of putative binding hotspots. As hotspot residues mediate the binding energetics of protein-protein interactions, we hypothesize that the knowledge of putative hotspots coupled with their evolutionary information should be helpful in the identification of native bound protein-protein complexes.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3