Simplified geometric representations of protein structures identify complementary interaction interfaces

Author:

McCafferty Caitlyn L.,Marcotte Edward M.ORCID,Taylor David W.ORCID

Abstract

ABSTRACTProtein-protein interactions are critical to protein function, but three-dimensional (3D) arrangements of interacting proteins have proven hard to predict, even given the identities and 3D structures of the interacting partners. Specifically, identifying the relevant pairwise interaction surfaces remains difficult, often relying on shape complementarity with molecular docking while accounting for molecular motions to optimize rigid 3D translations and rotations. However, such approaches can be computationally expensive, and faster, less accurate approximations may prove useful for large-scale prediction and assembly of 3D structures of multi-protein complexes. We asked if a reduced representation of protein geometry retains enough information about molecular properties to predict pairwise protein interaction interfaces that are tolerant of limited structural rearrangements. Here, we describe a cuboid transformation of 3D protein accessible surfaces on which molecular properties such as charge, hydrophobicity, and mutation rate can be easily mapped, implemented in the MorphProt package. Pairs of surfaces are compared to rapidly assess partner-specific potential surface complementarity. On two available benchmarks of 85 overall known protein complexes, we observed F1 scores (a weighted combination of precision and recall) of 19-34% at correctly identifying protein interaction surfaces, comparable to more computationally intensive 3D docking methods in the annual Critical Assessment of PRedicted Interactions. Furthermore, we examined the effect of molecular motion through normal mode simulation on a benchmark receptor-ligand pair and observed no marked loss of predictive accuracy for distortions of up to 6 Å RMSD. Thus, a cuboid transformation of protein surfaces retains considerable information about surface complementarity, offers enhanced speed of comparison relative to more complex geometric representations, and exhibits tolerance to conformational changes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural Biology in the Multi-Omics Era;Journal of Chemical Information and Modeling;2020-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3