Combining whole genome shotgun sequencing and rDNA amplicon analyses to improve detection of microbe-microbe interaction networks in plant leaves

Author:

Regalado JulianORCID,Lundberg Derek S.ORCID,Deusch OliverORCID,Kersten SonjaORCID,Karasov TaliaORCID,Poersch KarinORCID,Shirsekar GautamORCID,Weigel DetlefORCID

Abstract

AbstractMicroorganisms from all domains of life establish associations with plants. Although some harm the plant, others antagonize pathogens or prime the plant immune system, acquire nutrients, tune plant hormone levels, or perform additional services. Most culture-independent plant microbiome research has focused on amplicon sequencing of 16S rDNA and/or the internal transcribed spacer (ITS) of rDNA loci, but the decreasing cost of high-throughput sequencing has made shotgun metagenome sequencing increasingly accessible. Here, we describe shotgun sequencing of 275 wild Arabidopsis thaliana leaf microbiomes from southwest Germany, with additional bacterial 16S rDNA and eukaryotic ITS1 amplicon data from 176 of these samples. The shotgun data were dominated by bacterial sequences, with eukaryotes contributing only a minority of reads. For shotgun and amplicon data, microbial membership showed weak associations with both site of origin and plant genotype, both of which were highly confounded in this dataset. There was large variation among microbiomes, with one extreme comprising samples of low complexity and a high load of microorganisms typical of infected plants, and the other extreme being samples of high complexity and a low microbial load. We use the metagenome data, which captures the ratio of bacterial to plant DNA in leaves of wild plants, to scale the 16S rDNA amplicon data such that they reflect absolute bacterial abundance. We show that this cost-effective hybrid strategy overcomes compositionality problems in amplicon data and leads to fundamentally different conclusions about microbiome community assembly.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3